Combinatorial commutative algebra of conformal blocks

Christopher Manon www.math.gmu.edu/~cmanon cmanon@gmu.edu supported by NSF fellowship DMS-0902710 Talk 1: Review combinatorics and commutative algebra attached to conformal blocks, introduce flat degenerations of coordinate rings of moduli of principal bundles.

Talk 2: The $SL_2(\mathbb{C})$ case; structure of conformal blocks polytopes; combinatorial commutative algebra of $SL_2(\mathbb{C})$ conformal blocks.

Talk 3: The $SL_3(\mathbb{C})$ case; combinatorics of tensors; relationship between conformal blocks and mathematical biology. - \mathfrak{g} : a simple Lie algebra over \mathbb{C} .

-G: A simple algebraic group over \mathbb{C} with $Lie(G) = \mathfrak{g}$.

- Δ : A Weyl chamber of \mathfrak{g} .

 $-B \subset G$: A Borel subgroup.

- Δ_L : The *L*-restricted Weyl chamber of \mathfrak{g} .

- $(C, \vec{p}) \in \bar{\mathcal{M}}_{g,n}$: a stable, *n*-marked curve of genus *g*.

- $\vec{\lambda} = (\lambda_1, \dots, \lambda_n)$: an *n*-tuple of $sl_3(\mathbb{C})$ dominant weights, $\lambda_i \in \mathbb{Z}^2_{\geq 0}$.

- $V_{C,\vec{p}}(\vec{\lambda},L)$: the space of $sl_3(\mathbb{C})$ conformal blocks on (C,\vec{p}) with weight data $(\vec{\lambda},L)$

-
$$\mathbb{V}_{g,n}(\vec{\lambda},L) = dim[V_{C,\vec{p}}(\vec{\lambda},L)]$$

 $-\mathcal{M}_{C,\vec{p}}(SL_3(\mathbb{C}))$: the moduli of quasi-parabolic $SL_3(\mathbb{C})$ principal bundles on (C,\vec{p}) .

 $-\mathcal{L}(\vec{\lambda}, L)$: The line bundle on $\mathcal{M}_{C,\vec{p}}(SL_3(\mathbb{C}))$ with weight data $(\vec{\lambda}, L)$.

$$-V_{C,\vec{p}}(SL_3(\mathbb{C})) = Cox(\mathcal{M}_{C,\vec{p}}(SL_3(\mathbb{C}))).$$

$$H^0(\mathcal{M}_{C,\vec{p}}(SL_3(\mathbb{C})),\mathcal{L}(\vec{\lambda},L)) = V_{C,\vec{p}}(\vec{\lambda},L)$$

$$V_{C,\vec{p}}(SL_3(\mathbb{C})) = \bigoplus_{\vec{\lambda},L} V_{C,\vec{p}}(\vec{\lambda},L)$$

$$R_{C,\vec{p}}(\vec{r},L) = \bigoplus_{N \ge 0} V_{C,\vec{p}}(N\vec{\lambda},NL)$$

Questions:

- -What generates the conformal blocks?
- -What relations hold among these generators?
- -How do we count the conformal blocks?

Questions:

```
-What generates V_{C,\vec{p}}(SL_3(\mathbb{C}))?
```

-What relations hold among these generators?

-What is the multigraded Hilbert function of $V_{C,\vec{p}}(SL_3(\mathbb{C}))$?

For every trivalent graph with first Betti number g and n leaves, there is a flat degeneration

$$V_{C,\vec{p}}(G) \Rightarrow [\bigotimes_{v \in V(\Gamma)} V_{0,3}(G)]^{T_{\Gamma}}$$

What went right for $SL_2(\mathbb{C})$?

Proposition [Quantum Clebsch-Gordon rule] :

The dimension of $V_{0,3}(r_1, r_2, r_3, L)$ is either 1 or 0. It is dimension 1 if and only if $r_1 + r_2 + r_3$ is even, $\leq 2L$, and r_1, r_2, r_3 are the side-lengths of a triangle

What went right for $SL_2(\mathbb{C})$?

 $V_{0,3}(SL_2(\mathbb{C})) = \mathbb{C}[P_3(1)]$

What went right for $SL_2(\mathbb{C})$?

Allows us to build a toric degeneration of $V_{C,\vec{p}}(SL_2(\mathbb{C}))$ out of copies of $V_{0,3}(SL_2(\mathbb{C}))$.

In general it would suffice to have a toric degeneration of $V_{0,3}(G)$,

$V_{0,3}(G) \Rightarrow \mathbb{C}[P_3],$

which respects the multigrading by $\mathcal{X}(B)^3 \times \mathbb{Z}$.

$$V_{C,\vec{p}}(G) \Rightarrow [\bigotimes_{v \in V(\Gamma)} V_{0,3}(G)]^{T_{\Gamma}} \Rightarrow [\bigotimes_{v \in V(\Gamma)} \mathbb{C}[P_3]]^{T_{\Gamma}}$$

$$\left[\bigotimes_{v\in V(\Gamma)}\mathbb{C}[P_3]\right]^{T_{\Gamma}}=\mathbb{C}[P_{\Gamma}]$$

Where P_{Γ} is the fiber product of $|V(\Gamma)|$ copies of P_3 over copies of Δ_L .

The algebra $V_{0,3}(G)$

[Tsuchiya, Ueno, Yamada]: The space $V_{0,3}(\lambda, \eta, \mu, L)$ can be identified with a subspace of $[V(\lambda^*) \otimes V(\eta^*) \otimes V(\mu^*)]^{\mathfrak{g}}$

Let $\theta(sl_2(\mathbb{C})) \subset \mathfrak{g}$ be the copy of $sl_2(\mathbb{C})$ corresponding to the longest root. We branch each $V(\lambda)$ along this sub-algebra.

$$V(\lambda^*) = \bigoplus_i W_{\lambda,i}$$

Let $W_L(\lambda, \eta, \mu) = \bigoplus_{i+j+k \leq 2L} W_{\lambda,i} \otimes W_{\eta,j} \otimes W_{\mu,k}$.

 $V_{0,3}(\lambda,\eta,\mu,L) = W_L(\lambda,\eta,\mu) \cap [V(\lambda^*) \otimes V(\eta^*) \otimes V(\mu^*)]^{\mathfrak{g}}$

Invariant tensors have many combinatorial descriptions, including polyhedral counting rules.

[Berenstein, Zelevinsky]: There is a polytope $P_{\vec{i},3}(\lambda,\eta,\mu)$ with integral points in bijection with a basis of the space $[V(\lambda) \otimes V(\eta) \otimes V(\mu)]^{\mathfrak{g}}$

[Howe, Lee]: There is a polytope $L(\lambda, \eta, \mu)$ with integral points in bijection with a basis of the space $[V(\lambda) \otimes V(\eta) \otimes V(\mu)]^{sl_m(\mathbb{C})}$

[Zhelobenko]: The space $[V(\lambda) \otimes V(\eta) \otimes V(\mu)]^{\mathfrak{g}}$ can be identified with a subspace $V_{\mu,\lambda-\mu}(\eta) \subset V(\eta)$

This subspace inherits the dual canonical/crystal basis of Kashiwara/Lusztig. For every reduced decomposition \vec{i} of the longest element w_0 of the Weyl group of \mathfrak{g} , this basis is labelled by corresponding integer "string parameters." These parameters give the lattice points of $P_{\vec{i},3}(\lambda, \eta, \mu)$.

$V_{0,3}(\lambda,\eta,\mu,L) \subset [V(\lambda^*) \otimes V(\eta^*) \otimes V(\mu^*)]^{\mathfrak{g}} \subset V_{\mu^*,\eta^*-\mu^*}(\lambda)$

The conformal blocks subspace can be described as those vectors in $V_{\mu^*,\eta^*-\mu^*}(\lambda)$ which vanish under the action of $e_{\theta}^{L-\mu^*(H_{\theta})+1}$, where e_{θ} is the raising operator corresponding to the longest root.

Define $R_G = \bigoplus_{\lambda \in \Delta} V(\lambda)$, with multiplication

$$V(\lambda) \otimes V(\eta) \to V(\lambda + \eta)$$

This is the Cox ring of the full flag variety G/B, and the coordinate ring of the affine variety G/U, where $U \subset G$ is maximal unipotent.

Define $R_3(G) = [R_G \otimes R_G \otimes R_G]^G$.

$R_{3}(G) = [R_{G} \otimes R_{G} \otimes R_{G}]^{\mathfrak{g}} = \bigoplus_{\lambda,\eta,\mu\in\Delta} [V(\lambda) \otimes V(\eta) \otimes V(\mu)]^{\mathfrak{g}}$

[M]: For each \vec{i} there is toric degeneration of $R_3(G)$ to an affine semigroup algebra $\mathbb{C}[P_{\vec{i},3}]$ which respects the multigrading by $\mathcal{X}(B)^3$.

Here $P_{\vec{i},3}$ is a polyhedral cone with a map $\pi_3 : P_{\vec{i},3} \to \Delta^3$. The fiber $\pi^{-1}(\lambda, \eta, \mu)$ is the polytope $P_{\vec{i},3}(\lambda, \eta, \mu)$.

The subspaces $V_{0,3}(\lambda, \eta, \mu, L) \subset [V(\lambda^*) \otimes V(\eta^*) \otimes V(\mu^*)]^{\mathfrak{g}}$ are compatible with the multiplication operation in $R_3(G)$.

$V_{0,3}(G) \subset R_3(G) \otimes \mathbb{C}[t]$

$V_{0,3}(\lambda,\eta,\mu,L) \subset [V(\lambda^*) \otimes V(\eta^*) \otimes V(\mu^*)]^{\mathfrak{g}}t^L$

The function which assigns an invariant tensor $T \in [V(\lambda^*) \otimes V(\eta^*) \otimes V(\mu^*)]^{\mathfrak{g}}$ the minimum level L such that $T \in V_{0,3}(\lambda, \eta, \mu, L)$ defines a valuation v_{θ} on the algebras $R_3(G)$ and $V_{0,3}(G)$.

Valuations:

$$\begin{aligned} -v(ab) &= v(a) + v(b) \\ -v(a+b) &\leq max\{v(a), v(b)\} \\ -v(0) &= -\infty \\ -v(C) &= 0, \ C \in \mathbb{C}. \end{aligned}$$

Idea: Port the combinatorial commutative algebra of $R_3(G)$ over to $V_{0,3}(G)$.

Idea: Find a "nice" (good?) basis of $[V(\lambda^*) \otimes V(\eta^*) \otimes V(\mu^*)]^{\mathfrak{g}}$ which restricts to a basis of each space $V_{0,3}(\lambda, \eta, \mu, L)$.

BZ_3 : A "string cone" for $SL_3(\mathbb{C})$.

- $[V(\lambda) \otimes V(\eta) \otimes V(\mu)]^{sl_3(\mathbb{C})}$
- all \geq 0 integer entries,
- $(a_1 + a_2, a_3 + a_3) = \lambda$, $(b_1 + b_2, b_3 + b_4) = \eta$, $(c_1 + c_2, c_3 + c_4) = \mu$,

 $-a_2 + a_3 = c_2 + b_3, \ b_2 + b_3 = a_2 + c_3, \ c_2 + c_3 = b_2 + a_3.$

The semigroup algebra $\mathbb{C}[BZ_3]$ is generated by 8 elements.

 $X, Y, P_{12}, P_{23}, P_{31}, P_{21}, P_{32}, P_{13}$

Subject to one relation.

 $XY = P_{12}P_{23}P_{31}$

We can lift this information to a presentation of $R_3(SL_3(\mathbb{C}))$.

 $R_3(SL_3(\mathbb{C})) =$

 $\mathbb{C}[X, Y, P_{12}, P_{23}, P_{31}, P_{21}, P_{32}, P_{13}] / \langle XY - P_{12}P_{23}P_{31} + P_{21}P_{32}P_{13} \rangle$

 $V(\omega_1) = \mathbb{C}^3$ $V(\omega_1^*) = \wedge^2(\mathbb{C}^3)$

Here P_{ij} is the invariant bilinear form in $V(\omega_1) \otimes V(\omega_1^*)$, where ω_1 is in the *i*-th place and ω_1^* is in the *j*-th place.

X and Y are the determinant invariants in $V(\omega_1)^{\otimes 3}$ and $V(\omega_1^*)^{\otimes 3}$, respectively.

Can we use these tensors to get a basis of $V_{0,3}(\lambda, \eta, \mu, L)$?

Each generator $X, Y, P_{12}, P_{23}, P_{31}, P_{21}, P_{32}, P_{13}$ has v_{θ} value 1

Can we use these tensors to get a basis of $V_{0,3}(\lambda, \eta, \mu, L)$?

There is a basis of $[V(\lambda^*) \otimes V(\eta^*) \otimes V(\mu^*)]^{sl_3(\mathbb{C})}$ by monomials in the generators $X, Y, P_{12}, P_{23}, P_{31}, P_{21}, P_{32}, P_{13}$ each member of which has a distinct v_{θ} value.

This basis restricts to a basis of $V_{0,3}(\lambda, \eta, \mu, L)$.

This can be used to construct a presentation of $V_{0,3}(SL_3(\mathbb{C}))$.

 $V_{0,3}(SL_3(\mathbb{C})) =$

 $\mathbb{C}[Z, X, Y, P_{12}, P_{23}, P_{31}, P_{21}, P_{32}, P_{13}] / \langle ZXY - P_{12}P_{23}P_{31} + P_{21}P_{32}P_{13} \rangle$

The algebra $V_{0,3}(SL_3(\mathbb{C}))$

Toric degenerations of $V_{0,3}(SL_3(\mathbb{C}))$

$ZXY - P_{12}P_{23}P_{31}$

$ZXY + P_{21}P_{32}P_{13}$

$P_{21}P_{32}P_{13} - P_{12}P_{23}P_{31}$

$\mathbb{V}_{0,3}(\lambda,\mu,\eta,L) = L - max\{\lambda_1 + \lambda_2, \mu_1 + \mu_2, \eta_1 + \eta_2, L_1, L_2\} + 1$

$$L_1 = \frac{1}{3}(2(\lambda_1 + \mu_1 + \eta_1) + \lambda_2 + \mu_2 + \eta_2) - \min\{\lambda_1, \mu_1, \eta_1\}$$

$$L_2 = \frac{1}{3}(2(\lambda_2 + \mu_2 + \eta_2) + \lambda_1 + \mu_1 + \eta_1) - \min\{\lambda_2, \mu_2, \eta_2\}.$$

The multigraded Hilbert scheme for $\mathbb{V}_{0,3}$

For each trivalent graph Γ , there are $3^{|V(\Gamma)|}$ toric degenerations of $V_{C,\vec{p}}(SL_3(\mathbb{C}))$.

For (\mathbb{P}^1, \vec{p}) generic, the algebra $V_{\mathbb{P}^1, \vec{p}}(SL_3(\mathbb{C}))$ is generated by the 3^{n-1} conformal blocks of level 1, and has relations generated by homogenous forms of degree 2, 3.

For (C, \vec{p}) generic with g = 1, the algebra $V_{C,\vec{p}}(SL_3(\mathbb{C}))$ is generated by conformal blocks of level 1, 2, 3.

-The tensor product invariants of Howe, Lee; Berenstein, Zelevinsky.

-valuations suggest a role for tropical geometry

-Sturmfels, Sullivant, Toric ideals of phylogenetic invariants, Journal of Computational Biology 12 (2005) 204-228.

-Phylogenetic variety: algebraic variety cut out by binomial equations which vanish on marginal probabilities from a phylogenetic statistical model.

-these are tools for reconstructing ancestral relationships

-Given an oriented, rooted graph Γ , each vertex $v \in V(\Gamma)$ receives a (possibly k > 0 ary) random variable.

-Put probability distribution at the root vertex.

-each edge $e \in E(\Gamma)$ has a transition matrix A(e), used to recursively compute a distribution at each subsequent vertex.

-The resulting marginal probabilities at the leaves are forced to satisfy equations determined by the matrices A(e).

One source of matrices A(v) are finite Abelian groups G. For each G there is a phylogenetic "group based" model which determines a binomial ideal $I_{G,\mathcal{T}}$ for every structure tree \mathcal{T} .

For $G = \mathbb{Z}/2\mathbb{Z}$, $I_{\mathcal{T},\mathbb{Z}/2\mathbb{Z}}$ is the ideal defining $\mathbb{C}[P_{\mathcal{T}}(1)]$

Let $A_{\mathcal{T},G}$ denote the corresponding affine semigroup algebra.

[Kubjas, M]: $A_{\mathcal{T},\mathbb{Z}/3\mathbb{Z}}$ is a natural quotient of $[\bigotimes_{v \in V(\mathcal{T})} V_{0,3}(SL_3(\mathbb{C}))]^{T_{\mathcal{T}}}$

 $A_{\mathcal{T},\mathbb{Z}/m\mathbb{Z}}$ is a natural sub-quotient of $[\bigotimes_{v\in V(\mathcal{T})} V_{0,3}(SL_m(\mathbb{C}))]^{T_{\mathcal{T}}}$

Thankyou!