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Outline of Talks

Talk 1: Review combinatorics and commutative algebra at-
tached to conformal blocks, introduce flat degenerations of
coordinate rings of moduli of principal bundles.

Talk 2: The SL2(C) case; structure of conformal blocks poly-
topes; combinatorial commutative algebra of SL2(C) confor-
mal blocks.

Talk 3: The SL3(C) case; combinatorics of tensors; relation-
ship between conformal blocks and mathematical biology.
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Review from talks I, II

-g: a simple Lie algebra over C.

-G: A simple algebraic group over C with Lie(G) = g.

-∆: A Weyl chamber of g.

-B ⊂ G: A Borel subgroup.

-∆L: The L−restricted Weyl chamber of g.

3



Review from talks I,II

- (C, ~p) ∈ M̄g,n: a stable, n−marked curve of genus g.

- ~λ = (λ1, . . . , λn): an n−tuple of sl3(C) dominant weights,
λi ∈ Z2

≥0.

- VC,~p(~λ, L): the space of sl3(C) conformal blocks on (C, ~p)
with weight data (~λ, L)

- Vg,n(~λ, L) = dim[VC,~p(~λ, L)]
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Review from talks I,II

-MC,~p(SL3(C)): the moduli of quasi-parabolic SL3(C) princi-
pal bundles on (C, ~p).

-L(~λ, L): The line bundle on MC,~p(SL3(C)) with weight data
(~λ, L).

-VC,~p(SL3(C)) = Cox(MC,~p(SL3(C))).

H0(MC,~p(SL3(C)),L(~λ, L)) = VC,~p(~λ, L)
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Review from talks I,II

VC,~p(SL3(C)) =
⊕
~λ,L

VC,~p(~λ, L)

RC,~p(~r, L) =
⊕
N≥0

VC,~p(N~λ,NL)
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Review from talks I, II

Questions:

-What generates the conformal blocks?

-What relations hold among these generators?

-How do we count the conformal blocks?

7



Review from talks I,II

Questions:

-What generates VC,~p(SL3(C))?

-What relations hold among these generators?

-What is the multigraded Hilbert function of VC,~p(SL3(C))?

8



Review from talks I,II

For every trivalent graph with first Betti number g and n

leaves, there is a flat degeneration

VC,~p(G)⇒ [
⊗

v∈V (Γ)

V0,3(G)]TΓ
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Review from talks I,II

What went right for SL2(C)?

Proposition [Quantum Clebsch-Gordon rule] :

The dimension of V0,3(r1, r2, r3, L) is either 1 or 0. It is dimension 1 if and

only if r1 + r2 + r3 is even, ≤ 2L, and r1, r2, r3 are the side-lengths of a

triangle
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Review from talks I,II

What went right for SL2(C)?

(L,0,0)

(0,0,L)

(0,L,0)

(0,L,L)

(L,0,L)

(L,L,0)

1
2
_

V0,3(SL2(C)) = C[P3(1)]
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Review from talks I,II

What went right for SL2(C)?
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Allows us to build a toric degeneration of VC,~p(SL2(C)) out
of copies of V0,3(SL2(C)).
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The algebra V0,3(G)

In general it would suffice to have a toric degeneration of
V0,3(G),

V0,3(G)⇒ C[P3],

which respects the multigrading by X (B)3 × Z.

1
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The algebra V0,3(G)

VC,~p(G)⇒ [
⊗

v∈V (Γ)

V0,3(G)]TΓ ⇒ [
⊗

v∈V (Γ)

C[P3]]TΓ

[
⊗

v∈V (Γ)

C[P3]]TΓ = C[PΓ]

Where PΓ is the fiber product of |V (Γ)| copies of P3 over
copies of ∆L.
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The algebra V0,3(G)

1

2

3
4

6

9

8

5

7

15



The algebra V0,3(G)

[Tsuchiya, Ueno, Yamada]: The space V0,3(λ, η, µ, L) can be
identified with a subspace of [V (λ∗)⊗ V (η∗)⊗ V (µ∗)]g
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Tensors and Conformal Blocks

Let θ(sl2(C)) ⊂ g be the copy of sl2(C) corresponding to the
longest root. We branch each V (λ) along this sub-algebra.

V (λ∗) =
⊕
i

Wλ,i

Let WL(λ, η, µ) =
⊕

i+j+k≤2LWλ,i ⊗Wη,j ⊗Wµ,k.

V0,3(λ, η, µ, L) = WL(λ, η, µ) ∩ [V (λ∗)⊗ V (η∗)⊗ V (µ∗)]g
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Tensors and Conformal Blocks

Invariant tensors have many combinatorial descriptions, in-
cluding polyhedral counting rules.

[Berenstein, Zelevinsky]: There is a polytope P~i,3(λ, η, µ) with
integral points in bijection with a basis of the space [V (λ)⊗
V (η)⊗ V (µ)]g

[Howe, Lee]: There is a polytope L(λ, η, µ) with integral
points in bijection with a basis of the space [V (λ) ⊗ V (η) ⊗
V (µ)]slm(C)
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Tensors and Conformal Blocks

[Zhelobenko]: The space [V (λ)⊗ V (η)⊗ V (µ)]g can be iden-
tified with a subspace Vµ,λ−µ(η) ⊂ V (η)

This subspace inherits the dual canonical/crystal basis of
Kashiwara/Lusztig. For every reduced decomposition ~i of
the longest element w0 of the Weyl group of g, this basis is
labelled by corresponding integer ”string parameters.” These
parameters give the lattice points of P~i,3(λ, η, µ).
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The depth rule of Gepner,Witten

V0,3(λ, η, µ, L) ⊂ [V (λ∗)⊗ V (η∗)⊗ V (µ∗)]g ⊂ Vµ∗,η∗−µ∗(λ)

The conformal blocks subspace can be described as those
vectors in Vµ∗,η∗−µ∗(λ) which vanish under the action of

e
L−µ∗(Hθ)+1
θ , where eθ is the raising operator corresponding to

the longest root.
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The algebra R3(G)

Define RG =
⊕

λ∈∆ V (λ), with multiplication

V (λ)⊗ V (η)→ V (λ+ η)

This is the Cox ring of the full flag variety G/B, and the
coordinate ring of the affine variety G/U, where U ⊂ G is
maximal unipotent.
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The algebra R3(G)

Define R3(G) = [RG ⊗RG ⊗RG]G.

R3(G) = [RG ⊗RG ⊗RG]g =
⊕

λ,η,µ∈∆

[V (λ)⊗ V (η)⊗ V (µ)]g
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The algebra R3(G)

[M]: For each ~i there is toric degeneration of R3(G) to an
affine semigroup algebra C[P~i,3] which respects the multigrad-
ing by X (B)3.

Here P~i,3 is a polyhedral cone with a map π3 : P~i,3 →∆3. The
fiber π−1(λ, η, µ) is the polytope P~i,3(λ, η, µ).
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The algebras R3(G) and V0,3(G)

The subspaces V0,3(λ, η, µ, L) ⊂ [V (λ∗) ⊗ V (η∗) ⊗ V (µ∗)]g are
compatible with the multiplication operation in R3(G).

V0,3(G) ⊂ R3(G)⊗ C[t]

V0,3(λ, η, µ, L) ⊂ [V (λ∗)⊗ V (η∗)⊗ V (µ∗)]gtL
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The algebras R3(G) and V0,3(G)

The function which assigns an invariant tensor T ∈ [V (λ∗)⊗
V (η∗)⊗V (µ∗)]g the minimum level L such that T ∈ V0,3(λ, η, µ, L)
defines a valuation vθ on the algebras R3(G) and V0,3(G).

Valuations:

-v(ab) = v(a) + v(b)

-v(a+ b) ≤ max{v(a), v(b)}

-v(0) = −∞

-v(C) = 0, C ∈ C.
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The algebras R3(G) and V0,3(G)

Idea: Port the combinatorial commutative algebra of R3(G)
over to V0,3(G).

Idea: Find a ”nice” (good?) basis of [V (λ∗)⊗V (η∗)⊗V (µ∗)]g

which restricts to a basis of each space V0,3(λ, η, µ, L).
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The algebra R3(SL3(C))

BZ3: A ”string cone” for SL3(C).

[V (λ)⊗ V (η)⊗ V (µ)]sl3(C)

- all ≥ 0 integer entries,

- (a1 + a2, a3 + a3) = λ, (b1 + b2, b3 + b4) = η, (c1 + c2, c3 + c4) = µ,

- a2 + a3 = c2 + b3, b2 + b3 = a2 + c3, c2 + c3 = b2 + a3.

a1

a2

a3

a4
b1 b2 b3 b4

c1

c2

c3

c4=

= =
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The algebra R3(SL3(C))

The semigroup algebra C[BZ3] is generated by 8 elements.

X,Y, P12, P23, P31, P21, P32, P13
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The algebra R3(SL3(C))

Subject to one relation.

XY = P12P23P31
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The algebra R3(SL3(C))

We can lift this information to a presentation of R3(SL3(C)).

R3(SL3(C)) =

C[X,Y, P12, P23, P31, P21, P32, P13]/ < XY−P12P23P31+P21P32P13 >
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The algebra R3(SL3(C))

V (ω1) = C3

V (ω∗1) =
∧2(C3)

Here Pij is the invariant bilinear form in V (ω1)⊗V (ω∗1), where
ω1 is in the i−th place and ω∗1 is in the j−th place.

X and Y are the determinant invariants in V (ω1)⊗3 and V (ω∗1)⊗3,
respectively.
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The algebra V0,3(SL3(C))

Can we use these tensors to get a basis of V0,3(λ, η, µ, L)?

Each generator X,Y, P12, P23, P31, P21, P32, P13 has vθ value 1
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The algebra V0,3(SL3(C))

Can we use these tensors to get a basis of V0,3(λ, η, µ, L)?

There is a basis of [V (λ∗)⊗V (η∗)⊗V (µ∗)]sl3(C) by monomials in
the generators X, Y , P12, P23, P31, P21, P32, P13 each member
of which has a distinct vθ value.

This basis restricts to a basis of V0,3(λ, η, µ, L).
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The algebra V0,3(SL3(C))

This can be used to construct a presentation of V0,3(SL3(C)).

V0,3(SL3(C)) =

C[Z,X, Y, P12, P23, P31, P21, P32, P13]/ < ZXY − P12P23P31 + P21P32P13 >
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The algebra V0,3(SL3(C))
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The algebra V0,3(SL3(C))
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Toric degenerations of V0,3(SL3(C))

ZXY − P12P23P31

ZXY + P21P32P13

P21P32P13 − P12P23P31

37



Polyhedral counting rules: SL3(C)

V0,3(λ, µ, η, L) = L−max{λ1 + λ2, µ1 + µ2, η1 + η2, L1, L2}+ 1

L1 =
1

3
(2(λ1 + µ1 + η1) + λ2 + µ2 + η2)−min{λ1, µ1, η1}

L2 =
1

3
(2(λ2 + µ2 + η2) + λ1 + µ1 + η1)−min{λ2, µ2, η2}.
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The multigraded Hilbert scheme for V0,3
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Toric degenerations of VC,~p(SL3(C))

For each trivalent graph Γ, there are 3|V (Γ)| toric degenera-
tions of VC,~p(SL3(C)).

(1,0)

(1,0)(0,1)

(0,1)

(0,0) (0,0)
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Commutative algebra for genus 0

For (P1, ~p) generic, the algebra VP1,~p(SL3(C)) is generated
by the 3n−1 conformal blocks of level 1, and has relations
generated by homogenous forms of degree 2,3.
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Commutative algebra for genus 1

For (C, ~p) generic with g = 1, the algebra VC,~p(SL3(C)) is
generated by conformal blocks of level 1,2,3.

1

11

11

11

2

1

11

1

1

11

1 1

1

2
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Possible elements of a generalization

-The tensor product invariants of Howe, Lee; Berenstein,
Zelevinsky.

-valuations suggest a role for tropical geometry

43



Some mathematical biology

-Sturmfels, Sullivant, Toric ideals of phylogenetic invariants,
Journal of Computational Biology 12 (2005) 204-228.

-Phylogenetic variety: algebraic variety cut out by binomial
equations which vanish on marginal probabilities from a phy-
logenetic statistical model.

-these are tools for reconstructing ancestral relationships
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Some mathematical biology

-Given an oriented, rooted graph Γ, each vertex v ∈ V (Γ)
receives a (possibly k > 0 ary) random variable.

-Put probability distribution at the root vertex.

-each edge e ∈ E(Γ) has a transition matrix A(e), used to
recursively compute a distribution at each subsequent vertex.

-The resulting marginal probabilities at the leaves are forced
to satisfy equations determined by the matrices A(e).
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Some mathematical biology

One source of matrices A(v) are finite Abelian groups G. For
each G there is a phylogenetic ”group based” model which
determines a binomial ideal IG,T for every structure tree T .

For G = Z/2Z, IT ,Z/2Z is the ideal defining C[PT (1)]
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Some mathematical biology

Let AT ,G denote the corresponding affine semigroup algebra.

[Kubjas, M]: AT ,Z/3Z is a natural quotient of
[
⊗

v∈V (T ) V0,3(SL3(C))]TT

AT ,Z/mZ is a natural sub-quotient of [
⊗

v∈V (T ) V0,3(SLm(C))]TT
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Thankyou!
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