Combinatorial commutative algebra of conformal blocks

Christopher Manon www.math.gmu.edu/~cmanon cmanon@gmu.edu supported by NSF fellowship DMS-0902710

Outline of Talks

Talk 1: Review combinatorics and commutative algebra attached to conformal blocks, introduce flat degenerations of coordinate rings of moduli of principal bundles.

Talk 2: The $SL_2(\mathbb{C})$ case; structure of conformal blocks polytopes; combinatorial commutative algebra of $SL_2(\mathbb{C})$ conformal blocks.

Talk 3: The $SL_3(\mathbb{C})$ case; combinatorics of tensors; relationship between conformal blocks and mathematical biology.

- $(C, \vec{p}) \in \bar{\mathcal{M}}_{g,n}$: a stable, n-marked curve of genus g.
- $\vec{r} = (r_1, \dots, r_n)$: an n-tuple of $sl_2(\mathbb{C})$ dominant weights.
- $V_{C,\vec{p}}(\vec{r},L)$: the space of $sl_2(\mathbb{C})$ conformal blocks on (C,\vec{p}) with weight data (\vec{r},L)
- $\mathbb{V}_{g,n}(\vec{r},L) = dim[V_{C,\vec{p}}(\vec{r},L)]$

- $\mathcal{M}_{C,\vec{p}}(SL_2(\mathbb{C}))$: the moduli of quasi-parabolic $SL_2(\mathbb{C})$ principal bundles on (C,\vec{p}) .

- $\mathcal{L}(\vec{r},L)$: The line bundle on $\mathcal{M}_{C,\vec{p}}(SL_2(\mathbb{C}))$ with weight data (\vec{r},L) .

-
$$V_{C,\vec{p}}(SL_2(\mathbb{C})) = Cox(\mathcal{M}_{C,\vec{p}}(SL_2(\mathbb{C}))).$$

$$H^0(\mathcal{M}_{C,\vec{p}}(SL_2(\mathbb{C})),\mathcal{L}(\vec{r},L)) = V_{C,\vec{p}}(\vec{r},L)$$

$$V_{C,\vec{p}}(SL_2(\mathbb{C})) = \bigoplus_{\vec{r},L} V_{C,\vec{p}}(\vec{r},L)$$

$$R_{C,\vec{p}}(\vec{r},L) = \bigoplus_{N>0} V_{C,\vec{p}}(N\vec{r},NL)$$

Tangential remark

Let L > critical level, then

$$Proj(R_{\mathbb{P}^1,\vec{p}}(\vec{r},L)) = [\mathbb{P}^1]^n / /_{\vec{r}} SL_2(\mathbb{C})$$

Questions:

- -What generates the conformal blocks?
- -What relations hold among these generators?
- -How do we count the conformal blocks?

Questions:

- What generates $V_{C,\vec{p}}(SL_2(\mathbb{C}))$?
- -What relations hold among these generators?
- -What is the multigraded Hilbert function of $V_{C,\vec{p}}(SL_2(\mathbb{C}))$?

For every trivalent graph with first Betti number g and n leaves, there is a flat degeneration

$$V_{C,\vec{p}}(SL_2(\mathbb{C})) \Rightarrow [\bigotimes_{v \in V(\Gamma)} V_{0,3}(SL_2(\mathbb{C}))]^{T_{\Gamma}}$$

-Reduces to the g = 0, n = 3 case.

Proposition [Quantum Clebsch-Gordon rule]:

The dimension of $V_{0,3}(r_1,r_2,r_3,L)$ is either 1 or 0. It is dimension 1 if and only if $r_1+r_2+r_3$ is even, $\leq 2L$, and r_1,r_2,r_3 are the side-lengths of a triangle

[Tsuchiya, Ueno, Yamada]: The space $V_{0,3}(\lambda, \eta, \mu, L)$ can be identified with a subspace of $[V(\lambda^*) \otimes V(\eta^*) \otimes V(\mu^*)]^{\mathfrak{g}}$

$$\theta(sl_2(\mathbb{C}))\subset\mathfrak{g}$$

$$W_L(\lambda, \eta, \mu) = \bigoplus_{i+j+k \leq 2L} W_{\lambda,i} \otimes W_{\eta,j} \otimes W_{\mu,k}.$$

$$V_{0,3}(\lambda,\eta,\mu,L) = W_L(\lambda,\eta,\mu) \cap [V(\lambda^*) \otimes V(\eta^*) \otimes V(\mu^*)]^{\mathfrak{g}}$$

[classical Clebsch-Gordon rule]: The space $[V(r_1) \otimes V(r_2) \otimes V(r_3)]^{sl_2(\mathbb{C})}$ is dimesion 0, or 1. It is dimension 1 if and only if $r_1+r_2+r_3$ is even, and r_1,r_2,r_3 are the side-lengths of a triangle

$$-V(r) = Sym^r(\mathbb{C}^2)$$

-follows from computation on weight diagrams.

Structure of 0,3 algebra

$$V_{0,3}(SL_2(\mathbb{C})) = \bigoplus_{r_1,r_2,r_3,L\geq 0} V_{0,3}(r_1,r_2,r_3,L)$$

-Generated by

$$V_{0,3}(1,1,0,1), V_{0,3}(1,0,1,1), V_{0,3}(0,1,1,1), V_{0,3}(0,0,0,1)$$

Structure of 0,3 algebra

$$P_3(1) = conv\{(1011), (1101), (0111), (0001)\}$$

Structure of 0,3 algebra

$$V_{0,3}(SL_2(\mathbb{C})) = \mathbb{C}[P_3(1)]$$

- -Use the 0,3 case to build the general case via the degeneration theorem.
- Must describe the algebra

$$\left[\bigotimes_{v\in V(\Gamma)}V_{0,3}(SL_2(\mathbb{C}))\right]^{T_{\Gamma}}\subset\bigotimes_{v\in V(\Gamma)}V_{0,3}(SL_2(\mathbb{C})).$$

Choose your favorite trivalent graph with first Betti number g and n leaves.

Cut all non-leaf edges in half.

Cut all non-leaf edges in half.

Each of the resulting trinodes is assigned a copy of $V_{0,3}(SL_2(\mathbb{C}))$.

This is the tensor product $\bigotimes_{v \in V(\Gamma)} V_{0,3}(SL_2(\mathbb{C}))$.

 $[\bigotimes_{v\in V(\Gamma)}V_{0,3}(SL_2(\mathbb{C}))]^{T_{\Gamma}}$ is then the subalgebra where the levels at each trinode match, and the shared edges match.

The polytope $P_{\Gamma}(L)$

Definition:For Γ a trivalent graph of genus g with n marked points we define $P_{\Gamma}(L)$ to be the polytope given by nonnegative integer weightings of the edges of Γ which satisfy the Quantum Clebsch-Gordon rules at each trinode with respect to level L.

There is a flat degeneration $V_{C,\vec{p}}(SL_2(\mathbb{C})) \Rightarrow \mathbb{C}[P_{\Gamma}(1)]$

The polytope $P_{\Gamma}(\vec{r}, L)$

Definition:For Γ a trivalent graph of genus g with n marked points we define $P_{\Gamma}(\vec{r},L)$ to be the polytope given by nonnegative integer weightings of the edges of Γ which satisfy the Quantum Clebsch-Gordon rules at each trinode with respect to level L, and weight the i-th leaf of Γ with r_i .

Let $\pi: P_{\Gamma}(L) \to \mathbb{R}^n$ be the map which forgets everything but the weights on the leaves. Then $P_{\Gamma}(\vec{r}, L) = \pi^{-1}(\vec{r})$.

Structure of projective coordinate ring $R_{C,\vec{p}}(\vec{r},L)$

There is a flat degeneration $R_{C,\vec{r}}(\vec{r},L) \Rightarrow \mathbb{C}[P_{\Gamma}(\vec{r},L)]$

$$\mathbb{V}_{g,n}(\vec{r},L)$$
 is equal to the number of lattice points in the polytope $P_{\Gamma}(\vec{r},L)$.

Examples: $P_{2,0}(2)$

Examples: $P_{0,6}(2,2,2,2,2,4)$

Examples: $P_{0,6}(2,2,2,2,2,4)$

Examples: $P_{0,4}(s,r,t,q,L)$

Examples: $P_{1,1}(2L)$

Examples: $P_{1,2}(r,s,L)$

Affine semigroup algebras

- -always finitely generated (Gordon's Lemma),
- -always cut out by binomial relations,
- -always Cohen-Macaulay,
- -software: 4ti2, polymake, Macaulay 2.

degeneration to an affine semigroup algebra

- -Can lift generators and relations.
- -Can lift the multigraded Hilbert function.
- -Implies Cohen-Macaulay

[Buczynska, Buczynski, Kubjas, Michalek]: For any graph Γ the semigroup algebra $\mathbb{C}[P_{\Gamma}(1)]$ is generated by elements of degree $\leq g+1$.

For generic (C, \vec{p}) , the algebra $V_{C,\vec{p}}(SL_2(\mathbb{C}))$ is generated by conformal blocks of level $\leq g+1$.

[M]: For a special graph $\Gamma(g,n)$, the semigroup algebra $\mathbb{C}[P_{g,n}(1)]$ is generated by elements of degree ≤ 2 , and has relations generated by forms of degree ≤ 4 .

[M]: For generic (C, \vec{p}) the algebra $V_{C,\vec{p}}(SL_2(\mathbb{C}))$ is generated by conformal blocks of level ≤ 2 , and the relations on these generators are generated by forms of degree ≤ 4 .

[Abe]: Showed generation in degree ≤ 2 in the n=0 case.

[Castravet, Tevelev]: Showed generation in degree 1 in the $g={\bf 0}$ case.

[Buczynska, Wiesniewski]: Showed generation in degree 1 and relations in degree 2 for $\mathbb{C}[P_{\mathcal{T}}(1)]$, where \mathcal{T} is a tree.

The graph $\Gamma(g,n)$.

Passing to a sub-algebra often makes things more difficult.

[M]: For special graphs Γ , the semigroup algebra $\mathbb{C}[P_{\Gamma}(2\vec{r},2L)]$ is generated by elements of degree 1, and the associated binomial ideal has a quadratic, square-free Gröbner basis.

-This says that $P_{\Gamma}(2\vec{r},2L)$ is a normal lattice polytope.

For generic (C, \vec{p}) , the algebra $R_{C,\vec{p}}(2\vec{r}, 2L)$ is generated in degree 1 and is Koszul.

The square $\mathcal{L}(\vec{r},L)^{\otimes 2}$ of an effective line bundle on the moduli $\mathcal{M}_{C,\vec{p}}(SL_2(\mathbb{C}))$ has a Koszul projective coordinate ring.

Special graphs for the theorem on $R_{C,\vec{p}}(2\vec{r},2L)$:

The polytopes for the special graphs are made by fiber products of the following building blocks over [0, L].

Combinatorics of polytopes

 $\pi_1:P\to D$

 $\pi_2: Q \to D$

$$P \times_D Q = \{(v, w) | \pi_1(v) = \pi_2(w)\}$$

This polytope behaves well when P,Q,D behave well.

Combinatorics of polytopes

Each building block polytope is "balanced."

Definition: A polytope P is balanced if for each lattice point $w \in L \circ P \cap \mathbb{L}$ there is a combination of ceilings and floors \widehat{w} on the entries of $\frac{1}{L}w$ such that $\widehat{w} \in P \cap \mathbb{L}$ and $w - \widehat{w} \in (L-1) \circ P \cap \mathbb{L}$.

-This is equivalent to requiring that intersection $(C+v)\cap P$ be a normal polytope for every lattice translate (C+v) of the fundamental domain C of the lattice \mathbb{L} .

Combinatorics of polytopes

Another balanced polytope: GT(m, n, L)

$$\bigoplus_{\vec{r},L} V_{\mathbb{P}^1,\vec{p}}(\vec{r},L) = Cox(\mathcal{M}_{\mathbb{P}^1,\vec{p}}(SL_m(\mathbb{C}),\vec{P}))$$

Ex: Multigraded Hilbert function of $V_{1,1}(SL_2(\mathbb{C}))$

Ex: Multigraded Hilbert Function of $V_{1,2}(SL_2(\mathbb{C}))$

Thankyou!