
Combinatorial commutative algebra
of conformal blocks

2y

x
s

r

(L-s+1)(r+1)

(L-r+1)(s+1)

Christopher Manon
www.math.gmu.edu/∼cmanon
cmanon@gmu.edu
supported by NSF fellowship DMS-0902710

1



Outline of Talks

Talk 1: Review combinatorics and commutative algebra at-
tached to conformal blocks, introduce flat degenerations of
coordinate rings of moduli of principal bundles.

Talk 2: The SL2(C) case; structure of conformal blocks poly-
topes; combinatorial commutative algebra of SL2(C) confor-
mal blocks.

Talk 3: The SL3(C) case; combinatorics of tensors; relation-
ship between conformal blocks and mathematical biology.
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Review from talk I

- (C, ~p) ∈ M̄g,n: a stable, n−marked curve of genus g.

- ~r = (r1, . . . , rn): an n−tuple of sl2(C) dominant weights.

- VC,~p(~r, L): the space of sl2(C) conformal blocks on (C, ~p)
with weight data (~r, L)

- Vg,n(~r, L) = dim[VC,~p(~r, L)]
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Review from talk I

- MC,~p(SL2(C)): the moduli of quasi-parabolic SL2(C) prin-
cipal bundles on (C, ~p).

- L(~r, L): The line bundle on MC,~p(SL2(C)) with weight data
(~r, L).

- VC,~p(SL2(C)) = Cox(MC,~p(SL2(C))).

H0(MC,~p(SL2(C)),L(~r, L)) = VC,~p(~r, L)
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Review from talk I

VC,~p(SL2(C)) =
⊕
~r,L

VC,~p(~r, L)

RC,~p(~r, L) =
⊕
N≥0

VC,~p(N~r,NL)
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Tangential remark

Let L > critical level, then

Proj(RP1,~p(~r, L)) = [P1]n//~rSL2(C)
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Review from talk I

Questions:

-What generates the conformal blocks?

-What relations hold among these generators?

-How do we count the conformal blocks?
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Review from talk I

Questions:

- What generates VC,~p(SL2(C))?

-What relations hold among these generators?

-What is the multigraded Hilbert function of VC,~p(SL2(C))?
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Review from talk I

For every trivalent graph with first Betti number g and n

leaves, there is a flat degeneration

VC,~p(SL2(C))⇒ [
⊗

v∈V (Γ)

V0,3(SL2(C))]TΓ

-Reduces to the g = 0, n = 3 case.
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Review from talk I

Proposition [Quantum Clebsch-Gordon rule] :

The dimension of V0,3(r1, r2, r3, L) is either 1 or 0. It is dimension 1 if and

only if r1 + r2 + r3 is even, ≤ 2L, and r1, r2, r3 are the side-lengths of a

triangle
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Review from talk I

[Tsuchiya, Ueno, Yamada]: The space V0,3(λ, η, µ, L) can be
identified with a subspace of [V (λ∗)⊗ V (η∗)⊗ V (µ∗)]g

θ(sl2(C)) ⊂ g

WL(λ, η, µ) =
⊕

i+j+k≤2LWλ,i ⊗Wη,j ⊗Wµ,k.

V0,3(λ, η, µ, L) = WL(λ, η, µ) ∩ [V (λ∗)⊗ V (η∗)⊗ V (µ∗)]g
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Review from talk I

[classical Clebsch-Gordon rule]: The space [V (r1) ⊗ V (r2) ⊗
V (r3)]sl2(C) is dimesion 0, or 1. It is dimension 1 if and only
if r1 + r2 + r3 is even, and r1, r2, r3 are the side-lengths of a
triangle

-V (r) = Symr(C2)

-follows from computation on weight diagrams.
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Structure of 0,3 algebra

V0,3(SL2(C)) =
⊕

r1,r2,r3,L≥0

V0,3(r1, r2, r3, L)

-Generated by

V0,3(1,1,0,1), V0,3(1,0,1,1), V0,3(0,1,1,1), V0,3(0,0,0,1)
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Structure of 0,3 algebra
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P3(1) = conv{(1011), (1101), (0111), (0001)}
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Structure of 0,3 algebra

V0,3(SL2(C)) = C[P3(1)]

(L,0,0)

(0,0,L)

(0,L,0)

(0,L,L)

(L,0,L)

(L,L,0)
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Structure of g, n algebra

-Use the 0,3 case to build the general case via the degener-
ation theorem.

- Must describe the algebra

[
⊗

v∈V (Γ)

V0,3(SL2(C))]TΓ ⊂
⊗

v∈V (Γ)

V0,3(SL2(C)).
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Structure of g, n algebra

Choose your favorite trivalent graph with first Betti number
g and n leaves.
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Structure of g, n algebra

Cut all non-leaf edges in half.
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Structure of g, n algebra

Cut all non-leaf edges in half.
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Each of the resulting trinodes is assigned a copy of
V0,3(SL2(C)).
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Structure of g, n algebra

This is the tensor product
⊗

v∈V (Γ) V0,3(SL2(C)).
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[
⊗

v∈V (Γ) V0,3(SL2(C))]TΓ is then the subalgebra where the lev-
els at each trinode match, and the shared edges match.
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The polytope PΓ(L)

Definition:For Γ a trivalent graph of genus g with n marked
points we define PΓ(L) to be the polytope given by non-
negative integer weightings of the edges of Γ which satisfy the
Quantum Clebsch-Gordon rules at each trinode with respect
to level L.
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Structure of g, n algebra

There is a flat degeneration VC,~p(SL2(C))⇒ C[PΓ(1)]
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The polytope PΓ(~r, L)

Definition:For Γ a trivalent graph of genus g with n marked
points we define PΓ(~r, L) to be the polytope given by non-
negative integer weightings of the edges of Γ which satisfy the
Quantum Clebsch-Gordon rules at each trinode with respect
to level L, and weight the i−th leaf of Γ with ri.

Let π : PΓ(L)→ Rn be the map which forgets everything but
the weights on the leaves. Then PΓ(~r, L) = π−1(~r).
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Structure of projective coordinate ring RC,~p(~r, L)

There is a flat degeneration RC,~p(~r, L)⇒ C[PΓ(~r, L)]

Vg,n(~r, L) is equal to the number of lattice points in the
polytope PΓ(~r, L).
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Examples: P2,0(2)
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Examples: P0,6(2,2,2,2,2,2,4)
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Examples: P0,6(2,2,2,2,2,2,4)
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Examples: P0,4(s, r, t, q, L)
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Examples: P1,1(2L)
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Examples: P1,2(r, s, L)
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Affine semigroup algebras

-always finitely generated (Gordon’s Lemma),

-always cut out by binomial relations,

-always Cohen-Macaulay,

-software: 4ti2, polymake, Macaulay 2.
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degeneration to an affine semigroup algebra

-Can lift generators and relations.

-Can lift the multigraded Hilbert function.

-Implies Cohen-Macaulay
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Commutative algebra of VC,~p(SL2(C))

[Buczynska, Buczynski, Kubjas, Michalek]: For any graph Γ
the semigroup algebra C[PΓ(1)] is generated by elements of
degree ≤ g + 1.

For generic (C, ~p), the algebra VC,~p(SL2(C)) is generated by
conformal blocks of level ≤ g + 1.
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Commutative algebra of VC,~p(SL2(C))

[M]: For a special graph Γ(g, n), the semigroup algebra
C[Pg,n(1)] is generated by elements of degree ≤ 2, and has
relations generated by forms of degree ≤ 4.

[M]: For generic (C, ~p) the algebra VC,~p(SL2(C)) is generated
by conformal blocks of level ≤ 2, and the relations on these
generators are generated by forms of degree ≤ 4.
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Commutative algebra of VC,~p(SL2(C))

[Abe]: Showed generation in degree ≤ 2 in the n = 0 case.

[Castravet, Tevelev]: Showed generation in degree 1 in the
g = 0 case.

[Buczynska, Wiesniewski]: Showed generation in degree 1
and relations in degree 2 for C[PT (1)], where T is a tree.
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Commutative algebra of VC,~p(SL2(C))

...

...

The graph Γ(g, n).
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Commutative algebra of RC,~p(~r, L)

Passing to a sub-algebra often makes things more difficult.

[M]: For special graphs Γ, the semigroup algebra C[PΓ(2~r,2L)]
is generated by elements of degree 1, and the associated
binomial ideal has a quadratic, square-free Gröbner basis.

-This says that PΓ(2~r,2L) is a normal lattice polytope.

For generic (C, ~p), the algebra RC,~p(2~r,2L) is generated in
degree 1 and is Koszul.
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Commutative algebra of RC,~p(~r, L)

The square L(~r, L)⊗2 of an effective line bundle on the moduli
MC,~p(SL2(C))) has a Koszul projective coordinate ring.
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Commutative algebra of RC,~p(~r, L)

Special graphs for the theorem on RC,~p(2~r,2L) :
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Commutative algebra of RC,~p(~r, L)

The polytopes for the special graphs are made by fiber prod-
ucts of the following building blocks over [0, L].
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Combinatorics of polytopes

π1 : P → D

π2 : Q→ D

P ×D Q = {(v, w)|π1(v) = π2(w)}

This polytope behaves well when P,Q,D behave well.
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Combinatorics of polytopes

Each building block polytope is ”balanced.”

Definition: A polytope P is balanced if for each lattice point
w ∈ L◦P ∩L there is a combination of ceilings and floors ŵ on
the entries of 1

L
w such that ŵ ∈ P∩L and w−ŵ ∈ (L−1)◦P∩L.

-This is equivalent to requiring that intersection (C + v) ∩ P
be a normal polytope for every lattice translate (C + v) of
the fundamental domain C of the lattice L.
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Combinatorics of polytopes

Another balanced polytope: GT (m,n,L)
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⊕
~r,L VP1,~p(~r, L) = Cox(MP1,~p(SLm(C), ~P ))
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Ex: Multigraded Hilbert function of
V1,1(SL2(C))
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2y = L

L - 2y +1
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Ex: Multigraded Hilbert Function of
V1,2(SL2(C))
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Thankyou!
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